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Abstract

Consider two identical mobile computational entities, called robots, placed in the plane,
operating in Look-Move-Compute cycles. The Rendezvous problem requires the two robots to
meet within finite time at a point non known a priori.

It has been long known that, in absence of additional capabilities (e.g., compass), this prob-
lem is unsolvable if the two robots are memoryless, even if the system is semi-synchronous
(SSyNcH) and movements are rigid.

On the other hand, it has been recently shown that the two robots can rendezvous, even if
the system is asynchronous (ASYNCH), if each robot is endowed with a constant-size persistent
memory as well as with communication capability providing constant-size buffering.

In this paper we weaken that setting in two ways, by alternately removing each capability.
We first consider robots with O(1) bits of persistent memory but without communication capa-
bilities. This setting, which we call finite-state (FSTATE), corresponds to the well known (but
little investigated) universe of finite-state robots. We prove that indeed finite-state robots with
rigid movements can rendezvous in SSYNCH, showing that a constant number of persistent bits
of internal memory are able to overcome the impossibility.

We then consider robots with constant communication capability: in each cycle a robot can
transmit a constant-size message which is stored into the other robots’ constant-size persistent
buffer (deleting any previous content); however the robots are without the ability to remember
any of their computations, observations and transmissions from previous cycles. We call this
setting finite-communication (FCoMM). We prove that finite-communication robots with rigid
movements are able to rendezvous even in ASYNCH.

All proofs are constructive: in each setting, we present a protocol that allows the two robots
to rendezvous in finite time. Note that the constant number of persistent bits are used in a
very different way in two settings: to remember, in FSTATE; and to communicate, in FCoMM.
Our results provide an insight on the impact that these uses of constant memory has on the
rendezvous problem.

1 Introduction

1.1 Framework and Background

The Rendezvous problem requires two computational mobile entities, initially arbitrarily dispersed
in a spatial universe, to meet within finite time at a location non known a priori. This problem is
a central one in distributed computing by mobile entities. It has been intensively and extensively
studied both when the universe is a connected region of R? in which the entities, usually called
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robots, can freely move, and when the universe is a graph in which the entities, usually called agents,
move from node to neighbouring node (see, for example, [4], 5] [7, 1T}, 18], 22 23| 24, 25]).

In this paper we focus on the continuous setting of two robots located in the plane. In this
setting, each robot is modeled as a point, it has its own local coordinate system of which it perceives
itself as the centre, and has its own unit distance. Each robot operates in cycles of LOOK, COMPUTE,
MOVE activities. In each cycle, a robot observes the position of the other robot expressed in its
local coordinate system (LOOK); using that observation as input, it executes a protocol (the same
for both robots) and computes a destination point (COMPUTE); it then moves to the computed
destination point (MOVE); the movement is rigid, that is the robot does not stop until it reaches
its destination.

Depending on the activation schedule and the synchronization level, three basic types of sys-
tems are identified in the literature: a fully synchronous system (FSYNCH) is equivalent to a system
where there is a common clock and at each clock tick both robots are activated simultaneously, and
CoMPUTE and MOVE are instantaneous; a semi-synchronous system (SSYNCH) is like a fully syn-
chronous one except that, at each clock tick, it is possible for only one robot to be acive (the choice
is made by a fair scheduler); in a fully asynchronous system (ASYNCH), there is no common notion
of time, each COMPUTE and MOVE of each robot can take an unpredictable (but finite) amount of
time, and the interval of time between successive activities is finite but unpredictable. The focus of
almost all algorithmic investigations in this setting has been on oblivious (or memoryless) robots,
that is when the memory of the robots is erased at the end of each cycle; in other words, the robots
have no persistent memory. See [12] for an overview.

The importance of Rendezvous in the continuous setting derives in part from the fact that it
separates FSYNCH from SSYNCH for oblivious robots. In fact, with rigid movements Rendezvous is
trivially solvable in a fully synchronous system: both robots move to the halfway point. However,
without additional assumptions, Rendezvous is impossible for oblivious robots if the system is
semi-synchronous [25].

The Rendezvous problem is important also because it shows the impact of certain factors on
computability. For example, if the robots are endowed with consistent compasses the problem has
a trivial solution even if the system is fully asynchronous: the “northmost-eastmost” robot does
not move and the other reaches it. The problem is solvable in ASYNCH even if the local compasses
have some degree of inconsistency (a tilt of an appropriate angle) [I8]; the solution is no longer
trivial, but does exist.

In this paper, we are concerned with the impact that persistent memory has on the solvability
of Rendezvous. In particular, we are interested in determining what type and how much persistent
memory would allow the robots to rendezvous. Unlike the research on rendezvous in graphs, where
there are many studies on memory (e.g., [7, 8, 15, 20]), in the continuous setting considered here
very little is known in this regard.

It is well known that, in absence of additional assumptions, without any persistent memory
rendezvous is impossible even in SSYNCH [25]. On the other hand, a recent result shows that ren-
dezvous is indeed possible even in ASYNCH if each robot is endowed with a constant-size persistent
memory as well as with communication capability providing constant-size buffering [9] (see also
[26] for size-optimal solutions).

The conditions for this result to hold are overly powerful. The natural question is whether the
simultaneous presence of these conditions is truly necessary for rendezvous.

In this paper we address this question by weakening the setting in two different ways, and
investigate the Rendezvous problem in these weaker settings.



1.2 Main Contributions

In this paper we weaken the setting of [9, 26] by alternately removing one of the two assumptions.

We first examine the setting where the two robots have O(1) bits of internal persistent memory
but cannot communicate; this setting, which we call finite-state (FSTATE), corresponds to the
well known (but little investigated) universe of finite-state robots. Among other contributions, we
prove that indeed FSTATE robots with rigid movements can rendezvous in SSYNCH using only six
internal states, showing that a constant number of persistent bits of memory are able to overcome
the impossibility. The proof is constructive: we present a protocol that allows the two robots to
rendezvous in finite time under the stated conditions.

We then study the setting where each robot has constant communication capability: in each cy-
cle a robot can transmit a constant-size message which is stored into the other robots’ constant-size
persistent buffer (deleting any previous content); but it is otherwise oblivious: it has no persistent
memory of its previous observations, computations and transmissions. We call this setting finite-
communication (FComM) and corresponds to the (not previously studied) universe of oblivious
robots with bounded communication capability. We prove that two FCOMM robots with rigid
movements are able to rendezvous even in ASYNCH with 12 different types of messages (i.e. four
bits buffers); we also prove that only three different messages (i.e., two bits buffers) suffice in
SSYNCH. In other words, we show that persistent buffers of bounded size are able to overcome the
impossibility. Also for this setting all the proofs are constructive.

Finally, both in FSTATE and FCoMmM, we consider the Rendezvous problem in presence of an
adversary capable of interrupting the robots while moving. The only constraint on the adversary
is that, if interrupted before reaching its destination, a robot moves at least a minimum distance
d > 0 (otherwise, rendezvous is clearly impossible). We show that, with knowledge of the minimum
“safe” distance, Rendezvous is solvable by FSTATE robots in SSYNCH using only three internal
states. With the same knowledge, three possible messages are sufficient for FCoMM robots to solve
Rendezvous in ASYNCH.

Although amount of amount of distance travelled by the two robots until they rendezvous is
not the primary concern of this paper, we analyze it for all our protocols providing asymptotically
tight bounds.

An interesting feature of our investigation is that both settings are modelled as a system of
robots endowed with a constant number of wvisible lights: a FSTATE robot can see only its own
light, while a FCoOMM robot can see only the other robot’s light. Note that the constant number
of persistent bits are used in a very different way in two settings: to remember, in FSTATE; and
to communicate, in FCoMM. Our study provides some insight on the impact that these uses of
constant memory has on the rendezvous problem. Our results seem to indicate that “it might be
better to communicate than to remember”.

1.3 Related Work

The majority of the research on Rendezvous has been carried out when the spatial universe is
discrete; i.e., when the two computational entities are located in a graph. The literature on this
subject is extensive, covering a wide variety of aspects of the spacial universe (e.g., whether the
graph is acyclic, directed, of a particular class, etc.), of the initial setting of the entities (e.g., they
have distinct identifiers, they start simultaneously, etc), and on the computational capabilities of
the entities (e.g., their movement are asynchronous, the local memory is bounded, etc.). In addition
to the papers already referenced, the reader is referred to the fundamental book on the subject [2]
and, for an account of subsequent developments, to the recent surveys [21), 23].



The continuous setting considered here is the classical one of autonomous mobile robots in the
plane (e.g., [1L B [, [5 10, 13, 17, I8 19, 22 25]). In this setting, the research on Rendezvous
has been limited, mostly due to the impossibility result for SSYNCH [25] and the triviality of its
solution even in ASYNCH if the coordinate systems of the two robots are consistent. The only
other investigations are on the amount of inconsistency of the two coordinate systems that can be
tolerated when solving Rendezvous [18], and on the impact of adding externally visible persistent
memory to the robots’ capabilities [9) 26].

This paucity of results must be contrasted with the extensive amount of investigations on
the multi-agent rendezvous problem, usually called Gathering, of making k& > 2 robots move to
the same location within finite time (e.g., see [I, [, [5, 10, 13, 19, 22, 24]). Interestingly, from
a computational point of view, Rendezvous is very different from Gathering. In fact, k > 3
oblivious robots can always gather even in ASYNCH without any additional assumption other than
multiplicity detection [4]. Furthermore, in SSYNCH, k& > 3 robots can gather even in spite of a
certain number of faults [Il, B, [10], and converge in spite of inaccurate measurements [6].

Notice that both Rendezvous and Gathering are a special instance, called Point Formation,
of the important class of Pattern Formation problems, requiring the robots to form a geometric
pattern in the plain (e.g., [14} [16], 25, 27]).

Let us remark that Rendezvous has also been investigated in other models of continuous uni-
verses, different from the one considered here, (e.g., line, circle, polygonal regions, etc) and with
very different assumptions on the robots capabilities [2]. These models and investigations have
unfortunately no bearing on the classical model of autonomous mobile robots used here, and thus
on the study and results of this paper.

2 Model and Terminology

The general model we employ is the standard one for distributed computing by autonomous mobile
robots, described in [12]. The two robots are autonomous computational entities modeled as points
moving in R%. Each robot has its own coordinate system and its own unit distance, which may
differ from each other, and it always perceives itself as lying at the origin of its own local coordinate
system. Each robot operates in cycles that consist of three phases: Look, COMPUTE, and MOVE.
In the LOOK phase it gets the position (in its local coordinate system) of the other robot; in the
COMPUTE phase, it computes a destination point; in the MOVE phase it moves to the computed
destination point, along a straight line. Without loss of generality, the LOOK phase is assumed to
be instantaneous. The robots are anonymous, meaning that they do not have distinct identities,
they execute the same algorithm in each COMPUTE phase, and the input to such an algorithm is
the snapshot coming from the previous LOOK phase.

Here we study two settings; both settings can be described as restrictions of the model of visibile
lights introduced in [9]. In that model, each robot carries a persistent memory of constant size,
called light; the value of the light is called color or state, and it is set by the robot during each
COMPUTE phase. Other than the lights, the robots have no persistent memory of past snapshots
and computations. The colours of both lights are visible to the robots in the LOOK phase.

In the first setting considered here, that of silent finite-state (or simply, FSTATE) robots, the
light of a robot is visible only to the robot itself; i.e., the colored light merely encodes an internal
state. In the second setting, of oblivious finite-communication (or simply FComM) robots, the light
of a robot is visible only to the other robot; i.e., a robot can communicate with the other robot
through its colored light, but by the next cycle it forgets even the color of it own light (since it is
unable to see it).



In the asynchronous (ASYNCH) model, the robots are activated independently of each other,
and the duration of each COMPUTE, MOVE and inactivity is finite but unpredictable. As a result,
the robots do not have a common notion of time, and computations can be made based on obsolete
observations. In the semi-synchronous (SSYNCH) model, the activations of robots can be logically
divided into global rounds; in each round, one or both robots are activated, obtain the same
snapshot, compute, and perform their move. It is assumed that the activation schedule is fair, i.e.,
each robot is activated infinitely often.

Depending on whether or not the adversary can stop a robot before it reaches its computed
destination, the movements are called non-rigid and rigid, respectively. In the case of non-rigid
movements, there exists a constant § > 0 such that if the destination point’s distance is smaller
than 9, the robot will reach it; otherwise, it will move towards it by at least §. Note that, without
this assumption, an adversary could make it impossible for any robot to ever reach its destination,
following a classical Zenonian argument.

The two robots solve the Rendezvous problem if, within finite time, they move to the same
point and do not move from there; the meeting point is not determined a priori. A rendezvous
algorithm for SSYNCH (resp., ASYNCH) is a protocol that allows the robots to solve the Rendezvous
problem under any possible execution schedule in SSYNCH (resp., ASYNCH).

A particular class of algorithms, denoted by £, is that in which each robot may only compute a
destination point of the form A - other.position, for some A € R obtained as a function only of the
light of which the robot is aware (i.e., its internal state in the FSTATE model, or the other robot’s
color in the FCoMM model). The algorithms of this class are particularly interesting because they
operate also when the coordinate system of a robot is not self-consistent, and thus a robot cannot
rely on it from a cycle to the next (i.e., it can unpredictably rotate, change its scale or undergo a
reflection).

3 Finite-State Robots

We first consider FSTATE robots in the semi-synchronous setting, and we start by identifying a
simple impossibility result for algorithms in L.

Theorem 1. In SSYNCH, Rendezvous of two FSTATE robots is unsolvable by algorithms in L,
regardless of the amount of their internal memory.

Proof. For each robot, the destination point and the next state are a function of the internal state
only. Assuming that both robots start in the same state, we keep activating them one at a time,
alternately. Hence, every other turn they are in the same state. As soon as the first robot attempts
to move to the other robot’s location, we activate both robots simultaneously, making them switch
positions. By repeating this pattern, the robots never gather. ]

Thus the computation of the destination must take into account more than just the lights (or
states) of which each robot is aware.

The approach we use to circumvent this impossibility result is to have each robot use its own
unit of distance as a computational tool; recall that the two robots might have different units,
and they are not known to each other. We propose Algorithm [I] for Rendezvous in SSYNCH, also
illustrated in Figure |1 Each robot has six internal states, namely Sgtart, S1, S%eft, S;lght, S3, and
Shnish- Both robots are assumed to begin their execution in Sgiat. Each robot lies in the origin of
its own local coordinate system and the two robots have no agreement on axes orientations or unit
distance.



Intuitively, the robots try to reach a configuration in which they both observe the other robot
at distance not lower than 1 (their own unit). From this configuration, they attempt to meet in the
midpoint. If they never meet because they are never activated simultaneously, at some point one
of them notices that its observed distance is lower than 1. This implies a breakdown of symmetry
that enables the robots to finally gather.

In order to reach the desired configuration in which they both observe a distance not lower than
1, the two robots first try to move farther away from each other if they are too close. If they are
far enough, they memorize the side on which they see each other (left or right), and try to switch
positions. If only one of them is activated, they gather; otherwise they detect a side switch and
they can finally apply the above protocol. This is complicated by the fact that the robots may
disagree on the distances they observe. To overcome this difficulty, they use their ability to detect
a side switch to understand which distance their partner observed. If the desired configuration is
not reached because of a disagreement, a breakdown of symmetry occurs, which is immediately
exploited to gather anyway. As soon as the two robots coincide at the end of a cycle, they never
move again, and Rendezvous is solved.

(left) [1,+00), 1 (right) [1,+00), 1

(right) [1,400), (left) [1,+00), 3

Figure 1: Tllustration of Algorithm (1l A label of the form (d)I, A denotes a transition that applies
when the other robot is seen in direction d € {left,right} and its observed distance lies in the
interval I C R. The computed destination point is A - other.position. For example, a robot in state
Sstart perceiving the other at distance > 1 on the right will move to the position of the other robot
and will change state to S;lght.

To analyze the correctness of Algorithm [I| some terminology is needed. In the following, the
two robots will be called r and s, respectively. An expression of the form (S,, Ss, I, I;) denotes a
configuration in which robot r (resp. s) is in state S, (resp. Ss), and the distance at which it sees
the other robot lies in the interval I,. (resp. I5), according to its own distance function. Therefore,
the starting configuration of r and s is (Sstart, Sstart, [0, +00), [0, +00)).

With abuse of notation, we will say that a robot is in state S5 if it is in state Séeft (resp. S;ight)



Algorithm 1 Rendezvous for rigid SSYNCH with no unit distance agreement and six internal

states
1. dist < ||other.position||
2: if dist = 0 then
3: terminate
4: if other.position.z > 0 then
5: dir < right
6: else if other.position.z < 0 then
T: dir + left
8: else if other.position.y > 0 then > other.position.x = 0
9: dir < right
10: else
11: dir < left
12: if me.state = Sgiart then
13: if dist < 1 then
14: me.state <+ S
15: me.destination < other.position - (1 — 1/dist)
16: else
17: me.state < S$T
18: me.destination < other.position
19: else if me.state = S; then
20: if dist <1 then
21: me.state < Sgnish
22: me.destination < (0,0)
23: else
24: me.state < S$T
25: me.destination < other.position
26: else if me.state = S¢ then
27: if dir = d then
28: me.state < Sgnish
29: me.destination < other.position
30: else if dist < /2 then > side switch detected
31: me.state < Sfnish
32: me.destination < (0,0)
33: else
34: me.destination < other.position/2
35: if dist < 1 then
36: me.state < S3




37: else if me.state = S3 then

38: me.state < Sgnish

39: if dist < /4 then

40: me.destination < (0,0)

41: else >1l/a<d< 12
42: me.destination < other.position

43: else > me.state = Stnish
44: if dist <1 then

45: me.destination < (0,0)

46: else

47: me.destination < other.position

and it sees the other robot on its left (resp. right). Analogously, a robot is said to be in state S;ﬁ

if its state is SKf or SYE™ and it has detected a switch.

The unit distances of robots r and s, as measured in a global reference system, will be denoted
by wu, and ug, respectively. We will also let u = (u, + us)/2. For a configuration C' and a function
f(-,+), the expression C' — f(d, u) means that, whenever the two robots reach C' and their distance
is d, they eventually gather and solve Rendezvous, after covering a combined distance of at most

fld,u).

Observation 2. (Sq, Sy, I, Iy) — f(d,u) if and only if (Sp, Sa, Ip, Ia) — f(d,u).
Observation 3. If (S, Ss, I, I;) — f(d,u) and I C I, then (S, Ss, I, Is) — f(d,u).
Lemma 4. (Snish, 53, [0, 1], [1/4,1/2)) — d.

Proof. Robot r keeps staying still, while robot s moves to r as soon as it is activated. Hence the
total distance covered is d. O

Lemma 5. (Sgnish, 57, [0, 1], [1/2, 400)) — d.

Proof. Robot s keeps moving to the midpoint, while robot r never moves, because it keeps observing
a distance not greater than 1. As soon as s observes a distance smaller than 1 (hence in (1/2,1)), its
state becomes S3 and it moves to the midpoint again. At this point the distance covered is d’ < d,
and the new distance is d — d’. Now the configuration is (Sgnish, S3, [0, 1/2], [1/4,1/2)), and Lemma
applies. The total distance covered is therefore d’ + (d — d') = d. O

Lemma 6. (Shnish, 55 ,[0,1], [0, +00)) — d.

Proof. Robot r keeps staying still, while robot s moves to r as soon as it is activated, covering a
distance of d. O

Lemma 7. (Ss,S7,[1/4,1/2),[0,1/2)) — d.

Proof. If only robot s is activated, it stays still and its state becomes Sgpish. Therefore Lemma [4]
applies. Otherwise  moves over s’s location, traveling a distance of d, while s does not move. [

Lemma 8. (53, S;é, [1/4,1/2), /2, +00)) — 2d.



Proof. If only robot r is activated, it moves to s, and Rendezvous is solved with a covered distance
of d.

If only robot s is activated, it moves to the midpoint (and possibly switches to S3). As a
consequence, the distance observed by r becomes less than 1/4, hence it stays still forever (it only
switches to Sgnisn as soon as it is activated). On the other hand, s keeps moving to the midpoint,
until it observes a distance lower than 1, switches to S3, and finally moves to r, solving Rendezvous
after having covered a distance of d.

If both robots are activated on the first cycle, two cases arise.

e If the distance observed by s lies in [1/2,1), configuration (Sfnish,S3, [1/8,1/4),[/4,1/2)) is
reached, and Lemma [4] applies.

e If the distance observed by s is at least 1, configuration (Sgnish, S5, [1/8,1/4), [1/2, +00)) is
reached (the two robots switch sides), and Lemma |§| applies.

In both cases, at the first move s reaches r’s position, while r moves to the midpoint. Hence the
total distance covered is 3d/2, and the new distance is d/2. This distance is finally covered by s,
and the total distance covered becomes 2d. O

Lemma 9. (S7,57,[0,1/2),[}/2,+00)) — d.

Proof. If both robots are activated, two cases arise. If the distance observed by s is less than
1, configuration (Sgnish, 3, [0,1/4), [/4,1/2)) is reached, and Lemma | applies. Otherwise, if the
distance is at least 1, configuration (Sgpish, S;é ,[0,1/4), [1/2,4+00)) is reached, and Lemmaapplies.
In both cases, s moves by d/2 on its first turn while r stays still, and then they move again by d/2.

If only r is activated, configuration (Sﬁnis}“SZé, [0,1/2),[1/2,+00)) is reached, and Lemma
applies.

If only robot s is activated, two cases arise. If the distance observed by s is less than 1,
configuration (S;"é ,S3,[0,1/4),[1/4,1/2)) is reached, Lemma 7| applies, and the total distance covered
is d. Otherwise, if the distance is at least 1, the configuration remains (57, S7,[0,1/2), [1/2, +00)),
but the distance between the two robots halves. As the execution progresses, this case cannot repeat
itself forever, because eventually the distance observed by s becomes less than 1, or r is activated.
When this happens, s has just approached r at every move, covering a distance of d < d. Then
the remaining d — d’ is covered as detailed above. O

Lemma 10. (57,571, +00),[1,+00)) = d + u.

Proof. If both robots are activated, they compute the midpoint and they gather, covering a distance
of d. If only one robot is activated at each cycle, configuration (S;é, S;é, [1,+00), [1,400)) keeps
repeating itself for finitely many cycles, until the distance observed by some robot, say r, becomes
less than 1. The configuration then becomes (S;é, S;é, [1/2,1), [1/2,4+00)). At this point, the distance
covered is d’ < d, and the new distance is d — d’ < u,..

Once again, if both robots are activated at the next cycle, they gather in the midpoint, and
the total distance covered is d. If only s is activated, two cases arise. If the distance observed
by s is less than 1, configuration (S;é, Ss, [1/4,1/2),[1/4,1/2)) is reached, and Lemma (7| applies. If
the distance is at least 1, then configuration (S;"é7 S;é, [1/4,1/2),[1/2, +00)) is reached, and Lemma
applies. In both cases, the total distance covered is d.

Finally, if only r is activated, it moves to the midpoint, and configuration (Ss, S;é, [1/4,1/2), /1, +00))
is reached. The distance covered so far is d’' + (d — d’) /2, and the new distance is (d —d')/2 < u, /2.
Now Lemmas [7] and [§| apply so the two robots gather, and the distance they cover in this step is
at most d — d’. Hence the total distance covered is at most d + (d —d')/2 < d+u,/2 <d+u. O



Lemma 11. (S1, Shnish, [0, 1], (1, +00)) — d and (S1, Sstart, [0, 1], [1, +00)) — d.

Proof. Robot r switches to Sgnish as soon as it is activated, and keeps staying still. Robot s moves
to r as soon as it is activated. The total distance covered is therefore d. O

Lemma 12. (S1, Sstart, {1},1[0,1)) — 4u — d.
Proof. We distinguish three cases.

e If both robots are activated on the first cycle, they reach configuration (Sanisn, S1, (1, +00), {1}).
While doing that, r stays still and s moves by us — d, and the new distance is ugs. Then
Lemma, [11] applies, and the final distance covered is us — d + us = 2us — d < 4u — d.

e If only robot r is activated on the first cycle, configuration (Sgnish, Sstarts {1}, [0, 1)) is reached.
Now r keeps staying still and in state Sgnish. As soon as s is activated, configuration
(Sfnish, S1, (1,+00),{1}) is reached, and Lemma [11| applies. The total distance covered is
once again ug — d + ug = 2ugs — d < 4u — d.

e If only robot s is activated on the first cycle, configuration (S, S1, (1,4+00),{1}) is reached.
From now on, s keeps staying still (possibly switching to Sgnish), whereas r moves to s as
soon as it is activated. The distance covered is again 2ugs — d < 4u — d.

O
Lemma 13. (51,51, (1, 4+00), (1, +00)) — 3d + u.

Proof. If only one robot is activated, it moves to the other robot, and Rendezvous is solved with
a distance covered of d. If both robots are activated, they turn S’%eft or S;ght and switch posi-
tions, covering a distance of 2d. Hence they reach configuration (S;é, S;é, (1,+400), (1,400)), and
Lemma [L0] applies. The final distance covered is 2d + d + v = 3d + u. O

Theorem 14. In SSYNCH, Rendezvous of two FSTATE robots is solvable with six internal states.
This result holds even without unit distance agreement. Moreover, if the average unit distance of
the two robots is u, and their initial distance is d, they combinedly cover a distance of at most

max{9u —5d, 3d+u}.
Proof. We prove that (Sstart, Sstart, [0, +00), [0, +00)) — max { 9u — 5d, 3d + u }. Three cases arise.

e Let the configuration be (Sstart, Sstart, [0, 1), [0, 1)). If both robots are activated, configuration

(51,571, (1,+00), (1,40)) is reached. The distance covered is (u, — d) + (us — d) = 2u — 2d
and the new distance is u, + us —d = 2u — d. Now Lemma [13| applies, and the total distance
covered is 2u — 2d + 3(2u — d) + u = Yu — 5d.
If only one robot is activated, say r, then configuration (S, Sstart, {1}, [0, 4+00)) is reached.
The distance covered is u, — d and the new distance is u,. Now, if the configuration is
(S1, Sstart, {1},0, 1)), Lemmaapplies. The final distance covered is u, —d+4u—u, = 4u—d.
Instead, if the configuration is (S1, Sstart, {1}, [1, +00)), Lemma applies, and the final
distance covered is u, — d + u, < 4u — d.
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e Let the configuration be (Sstart, Sstart, |1, +00),[0,1)) (the symmetric case is equivalent, due
to Observation. If only robot r is activated, it moves to s and Rendezvous is solved with a
distance covered of d. If only s is activated, configuration (Sstart, S1, (1, +00),{1}) is reached,
and Lemma [11] applies. The total distance covered is us — d + us; < 4u — d. Finally, if both
robots are activated, configuration (S5, S1, [0, 4+00), [0, 1)) is reached. The combined distance
covered is (d) + (us — d) = us, and the new distance is us — d. Next, if only robot s is
activated, configuration (S5, Sanish, [0, +00), [0, 1)) is reached, and Lemma |§| applies. In any
other case, 7 moves to s and Rendezvous is solved. In all cases, the total distance covered is
us +us —d < 4du — d.

e Let the configuration be (Sstart, Sstart, [1, +00), [1,+00)). If only one robot is activated, it
moves to the other robot, and Rendezvous is solved with a total distance covered of d. If both
robots move, they switch positions, and the configuration becomes (S;é, S;é, [1,+00), [1, +00)).
The combined distance covered is 2d, and the new distance is again d. Then LemmalI0|applies,
and the final distance covered is 2d + d + u = 3d + u.

Hence the total distance covered is at most
max{4u —d, 9u—>5d, 3d+u}.
However, note that 4u — d < 9u — 5d if d < w and 4u — d < 3d + w if d > u. Therefore,
max { 4u —d, 9u —5d, 3d+ v} = max{9u —5d, 3d+u}.
O

The upper bound we computed on the distance covered by robots executing Algorithm [1]is in
fact asymptotically tight, as d/u grows.

Proposition 15. Two robots executing Algorithm [1] may cover a combined distance that is arbi-
trarily close to the upper bound given by Theorem for arbitrarily large values of d/u.

Proof. Indeed, let n be a positive integer, let € be a small-enough positive number, let us = -u,., and
let d = 2"(1—¢)u,. Hence u = u,(14¢)/2 and the initial configuration is (Sstart, Sstart, |1, +00), [1, +00)).
On the first turn we activate both robots, which switch positions and cover a total distance of 2d.
The new configuration is (S’;é, S;é, [1,4+00),[1,4+00)). Now we activate only robot r, n times in a
row. r keeps observing a distance greater than 1, hence it keeps moving to the midpoint. Eventually
it reaches a distance of (1 — ¢)u,, having covered a distance of d — (1 — €)u,. Now, assuming that ¢
is small enough, the configuration is (S7, 57, [1/2,1), [1,+00)). Once again we activate only robot
r, which moves to the midpoint, covering a distance of (1 — ¢)u,/2. The configuration becomes
(Sg,S;é, [1/4,1/2),[1/2,4+00)), and now we activate both robots. r moves to s’s position and gets
state Shnish, while s moves to the midpoint, becoming either S3 or S5 . The combined distance
covered is (1 —¢)3-u, /4, and the new distance is (1 —¢)u, /4. Now, if only s is activated, regardless
of its state, it reaches the other robot, covering a distance of (1 — €)u, /4. In total, the distance
covered is

l1—¢ 3(1—¢) 1—¢ 1—¢ 1—¢

5 -ur+T-ur+T-uT:3d+%-u7«:3d+1+€

2d+d—(1—5)-uT—|— - u,

which converges to 3d + u as € vanishes. O
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4 Finite-Communication Robots

We now focus on FCoMM robots, distinguishing the asynchronous and the semi-synchronous cases.

4.1 Asynchronous
It is not difficult to see that algorithms in £ are not sufficient to solve the problem.

Theorem 16. In ASYNCH, Rendezvous of two FCOMM robots is unsolvable by algorithms in L,
regardless of the amount of colors employed.

Proof. For each robot, the destination point and the next state are a function of the state of the
other robot only. Assuming that both robots start in the same state, we let them perform their
execution synchronously. As soon as both robots compute the midpoint m as a result of seeing
each other in state A, we let only robot r complete its cycle. Meanwhile, s has computed m but
still has not updated its state, nor moved. Therefore, r keeps seeing s set to A, and computes the
new midpoint without changing its own state. We let r complete another cycle, and then we let s
update its state and reach m. As a result, both robots are back in the same state and have not
gathered. By repeating this pattern, the robots never solve Rendezvous. O

We now describe an algorithm (which is not in £) that solves the problem. Also this algorithm
uses the local unit distance as a computational tool, but in a rather different way, since a robot
cannot remember and has to infer information by observing the other robot’s light.

Intuitively, the two robots try to reach a configuration in which both robots see each other at
distance lower than 1. To do so, they first communicate to the other whether or not the distance
they observe is smaller than 1 (recall that they may disagree, because their unit distances may
differ). If one robot acknowledges that its partner has observed a distance not smaller than 1, it
reduces the distance by moving toward the midpoint.

The process goes on until both robots observe a distance smaller than 1. At this point, if they
have not gathered yet, they try to compare their distance functions, in order to break symmetry.
They move away from each other in such a way that their final distance is the sum of their respective
unit distances. Before proceeding, they attempt to switch positions. If, due to asynchrony, they
failed to be in the same state at any time before this step, they end up gathering. Instead, if their
execution has been synchronous up to this point, they finally switch positions. Now, if the robots
have not gathered yet, they know that their distance is actually the sum of their unit distances.
Because each robot knows its own unit, they can tell if one of them is larger. If a robot has a
smaller unit, it moves toward its partner, which waits.

Otherwise, if their units are equal, they apply a simple protocol: as soon as a robot wakes up,
it moves toward the midpoint and orders its partner to stay still. If both robots do so, they gather
in the middle. If one robot is delayed due to asynchrony, it acknowledges the order to stay still and
tells the other robot to come.

Theorem 17. In ASYNCH, Rendezvous of two FCOMM robots is solvable with 12 colors. This
result holds even without unit distance agreement.

Proof. We show that Algorithm [2] also depicted in Figure [2] correctly solves Rendezvous. Both
robots start in state (TEST), and then update their state to (ME > 1) or (ME < 1), depending on
if they see each other at distance greater or lower than 1 (they may disagree, because their distance
functions may be different).

If robot r sees robot s set to (ME > 1), it starts approaching it by moving to the midpoint,
in order to reduce the distance. No matter if r approaches s several times before s is activated,
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Algorithm 2 Rendezvous for rigid ASYNCH with no unit distance agreement and 12 externally
visible states

37:

dist < ||other.position||
if other.state = (TEST) then > testing distances
if dist > 1 then
me.state < (ME > 1)
else
me.state < (ME < 1)

else if other.state = (ME > 1) then > reducing distances
me.state < (APPROACHING)
me.destination < other.position/2

else if other.state = (APPROACHING) then > test distances again
me.state <— (TEST)

. else if other.state = (ME < 1) then

if dist > 1 then

me.state < (ME > 1)
else

me.state < (BOTH < 1)

. else if other.state = (BoTH < 1) then

if dist = 0 then > we have gathered
me.state < (HALTED)

else
me.state < (MOVING AWAY)
if dist < 1 then > moving away by 1 — dist/2

me.destination < other.position - (1/2 — 1/dist)

. else if other.state = (MOVING AwWAY) then

me.state < (YOU MOVED)

. else if other.state = (YOou MOVED) then

me.state <— (COMING)
me.destination < other.position

. else if other.state = (COMING) then

me.state <— (WAITING)

. else if other.state = (WAITING) then

if dist > 2 then > my unit is smaller
me.state <— (STAY)
me.destination < other.position

else if dist = 2 then > our units are equal
me.state < (BOTH = 2)
else > my unit is bigger or we have gathered

me.state < (HALTED)

. else if other.state = (BOTH = 2) then

me.state <— (STAY)
if dist = 2 then > moving to the midpoint
me.destination < other.position/2

. else if other.state = (STAY) then

me.state <— (HALTED)

13



45: else > other.state = (HALTED)

46: if dist = 0 then > we have gathered
AT: me.state < (HALTED)

48: terminate

49: else > maintain position while I come
50: me.state <— (STAY)

51: me.destination < other.position

M

Approaching "

d<1
d<1

Moving Away

Comi> >

Figure 2: State transitions in Algorithm [2}

or both robots approach each other at different times, one of them eventually sees the other set to
(APPROACHING). When this happens, their distance has reduced by at least a half, and at least
one robot turns (TEST) again, thus repeating the test on the distances.

At some point, both robots see each other at a distance lower than 1 during a test, and at least
one of them turns (BoTH < 1). If they have not gathered yet, they attempt to break symmetry by
comparing their distance functions. To do so, when a robot sees the other set to (BOTH < 1), it
turns (MOVING AwAY) and moves away by its own unit distance minus half their current distance.
This move will be performed at most once by each robot, because if one robot sees the other robot
still set to (BOTH < 1), but it observes a distance not lower than 1, then it knows that it has
already moved away, and has to wait.

When a robot sees its partner set to (MOVING AWAY), it shares this information by turning
(You MoVED). If only one robot turns (You MOVED), while the other is still set to (MOVING
AWAY), then the second robot turns (COMING) and reaches the other robot, which just turns
(WAITING) and stays still until they gather.

Otherwise, if both robots see each other set to (You MOVED), they both turn (COMING) and
switch positions. At least one of them then turns (WAITING). Now, if a robot sees its partner set
to (WAITING) and they have not gathered yet, it knows that their current distance is the sum of
their unit distances. If such a distance is greater than 2, then the robot knows that its partner’s
unit distance is bigger, and it moves toward it, while ordering it to stay still. Vice versa, if the
distance observed is smaller than 2, the observing robot stays still and orders its partner to come.

Finally, if the distance observed is exactly 2, the observing robot knows that the two distance
functions are equal, and turns (BOTH = 2). In this case, a simple protocol allows them to meet. If
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a robot sees the other set to (BOTH = 2) at distance 2, it turns (STAY) and moves to the midpoint.
If both robots do so, they eventually gather. Indeed, even if the first robot reaches the midpoint
while the other is still set to (BOTH = 2), it now sees its partner at distance 1, and knows that it
has to wait. On the other hand, whenever a robot sees its partner set to (STAY), it turns (HALTED),
which tells its partner to reach it. This guarantees gathering even if only one robot attempts to
move to the midpoint. O

Proposition 18. Two robots executing Algorithm[3 cover a combined distance of at most
max{8u—d, 3d+6u}.

Moreover, the distance covered may be arbitrarily close to this upper bound, for arbitrarily large
and arbitrarily small values of d/u.

Proof. 1f us < d < uy, no robot moves until s turns (ME > 1), r sees it, and starts approaching it. s
never moves in this phase, because r keeps communicating that its observed distance is lower than
1. Instead, s keeps communicating that its observed distance is at least 1, until r has approached
enough, and their distance is d’ < us < u,. At this point, s turns (TEST), r turns (ME < 1), and
s turns (BOTH < 1). When r sees this, it moves away by u, — d'/2, while s turns (YOu MOVED).
Hence r moves to s’s position while s waits, and the robots gather. The total distance covered is

! /
d—d'+ur—d§+ur+d§:d—d'+2ur < 3u, < 6u.
If u, < d < ug, the analysis is similar.

If both u, and us are greater than d, no robot moves until one of them turns (MOVING AwWAY).
If only one robot does so, say, r, the analysis is similar to that of the previous case: r moves away
by u, — d/2 and then reaches s. The total distance covered is 2u, < 4u. Instead, if both robots
turn (MOVING AwAY), they collectively move by 2u — d, ending up at distance 2u. Now, either
one robot reaches the other and they gather, or they switch positions. In the first case, the final
distance covered is 4u — d < 8u — d. In the other case, the robots switch positions, covering a
distance of 4u, and then they gather, covering a distance of 2u. The total distance covered in this
case is exactly 8u — d. Clearly, there exists a schedule that makes the robots cover exactly this
distance, for arbitrarily small values of d/u. Also note that 8u — d > 7u. Since the upper bound
obtained in the previous paragraph was less than 6u, the distance covered by the robots (in terms
of u) is strictly greater in this case.

Finally, assume that neither u,’s nor u,’s unit distance is greater than d. At least one of the two
robots eventually turns (APPROACHING) and moves to the midpoint. After they have approached,
at least one will eventually see the other set to (TEST), and the test will be repeated. This process
will continue until at least one of the two robots will see the other at a distance not greater than its
unit distance. Let d’ be the distance of the two robots at this point. By the previous paragraphs’
reasoning, the distance the robots cover from this time onward is at most 8u — d' > Tu.

Let d; be the distance between the two robots as they perform the ¢-th test, with d; = d and
d,, = d'. Between two consecutive tests, either only one robot approaches the other, or both robots
approach each other. In the first case, only one robot will turn (TEST) afterwards, hence the
symmetry will be broken and it will never be restored (that is, the two robots will never be found
in the same state). Therefore, at any subsequent test, only one robot will actually turn (TEST) and
only one robot will approach the other. Eventually, after the ¢-th test, they will cover a distance
of at most d; + 4u.
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Otherwise, if both robots approach each other between the i-th and the (i 4+ 1)-th test, they
may gather in the midpoint. However, if this happens, they do not cover the maximum distance
possible, therefore we ignore this case. The only other behavior that the robots may have is the
following: one robot, say r, sees s set to (ME > 1), so it plans to turn (APPROACHING) and move to
the midpoint. Before this happens, s sees 7 still set to (ME > 1), hence it moves to the midpoint.
Then s performs another cycle, and keeps moving towards r, to the new midpoint. This continues
until r actually moves to the old midpoint, and then a new test is performed. At the end of this
process, the new distance d;; is such that d;/4 < d;11 < d;/2. The total distance covered during
this phase is exactly d; + d;+1.

From the above analysis it follows that, if the symmetry is never broken (i.e., if both robots
approach each other between every pair of consecutive tests), the maximum distance they may
cover is

k—1 k—1 k—1

d d
i=2 =2 =2

This also means that dj_; at least as large as u, and ug (because both robots approach each other
after the (k — 1)-th test), and therefore dj,_; > u. This implies that d = d; > 2¥~2u, hence

3d + 8u < 3d — 2u + 8u = 3d + 6u.

=
There actually exist schedules that yield covered distances that are arbitrarily close to 3d + 6u, for
arbitrarily large values of d/u. Indeed, in the previous analysis, we may assume that u, = us = u
and d = 2¥=2(1 + ¢)u, for a sufficiently small ¢ > 0. Every time a test is performed, both robots
approach each other and one of them performs sufficiently many turns before the other one moves,
in such a way that d; > 2¥7"=1(1 + £/i)u. Clearly, as ¢ vanishes, the resulting distance covered by
the robots tends to 3d + 6u.

To conclude, we observe that, if the symmetry is broken after the j-th test, the total distance
covered is at most

J J
d d
d+2) di+4u<d+2) o +du=3d— i +4du < 3d+ du < 3d + 6u.
=2 =2

4.2 Semi-Synchronous

In SSYNCH the situation is radically different from the ASYNCH case. In fact, it is possible to
find a simple solution in £ that uses the minimum number of colors possible, and operates cor-
rectly without unit distance agreement, starting from any arbitrary color configuration, and with
interruptable movements (see Algorithm [3[ and Figure [3).

Theorem 19. In SSYNCH, Rendezvous of two FCOMM robots is solvable by an algorithm in L with
only three distinct colors. This result holds even if starting from an arbitrary color configuration,
without unit distance agreement, and with non-rigid movements.

Proof. We show that Algorithm |3 (see also Figure |3)) correctly solves Rendezvous from any initial
configuration. Assume first that both robots start in the same state and both are activated at each
turn. Then they keep having equal states, and they cycle through states A, B, and C forever.
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Algorithm 3 Rendezvous for non-rigid SSYNCH with three externally visible states
if other.state = A then
me.state < B
me.destination < other.position/2
else if other.state = B then
me.state < C
else > other.state = C
me.state < A
me.destination < other.position

Figure 3: State transitions in Algorithm

Every time they are both set to A, they move toward the midpoint and their distance reduces by
at least 246, until it becomes so small that they actually gather.

Otherwise, if at some point the two robots are in different states, they will keep staying in
different states forever. In this case their distance will never increase, and they will periodically be
found in states B and C, respectively. Whenever this happens, the robot set to C retains its state
and stays still until the other robot is activated and moves toward it by at least §. As soon as their
distance becomes not greater than § and they turn again B and C, they finally gather. O

It is straightforward to observe the following.

Observation 20. If movements are rigid, two robots executing Algorithm[3, initially at distance d
and both in state A, cover a combined distance of exactly d.

However, if movements are not rigid, the algorithm may be very inefficient.

Proposition 21. Two robots executing Algorithm [3, initially at distance d and both in state A,
cover a combined distance of at most

(d + 26) [z‘ﬂ —d

This upper bound is tight.

Proof. If both robots are activated at each turn, they keep having the same internal state. They
alternate between moving towards the midpoint and moving towards each other’s position. In order
to make them cover the maximum possible distance, the scheduler must make them move as little
as possible when their target is the midpoint (hence by at most J), and let them switch positions
otherwise. Then, every three turns, the robots’ distance decreases by 20 and they switch position.
Eventually, the total distance covered by the two robots combined is

k—1

d+2) (d— 2ib),

=1
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where k = [d/(20)]. Let d’ be such that d = 2(k — 1)0 + d’ (hence 0 < d’ < 26). Then the total
distance covered becomes

k(k—1)

d+2(k —1)d — 46 —%kd—d—(d—d)k = (d+dVk—d < (d+20) [ﬂ 4

26

Whenever d = 2kd, that is, d = 2§, the above expression becomes equal to kd, the inequality
becomes an equality, and there exists an activation schedule that makes the robots cover exactly
that distance, implying that the upper bound is matched for arbitrarily large values of d.

If, at any time, only one robot is activated, then the two robots’ states become different, and
will remain different forever. Then, the sequence of movements will cycle through these three state
configurations: one robot in A and one in B, one robot in B and one in C, and one robot in C' and
one in A. In the first phase, the robot in B keeps moving toward the midpoint until the robot in
A is activated. In the second phase the robot in B moves toward the other robot exactly once. In
the third phase, (they either gather or) the robot in C' moves exactly once toward the midpoint,
and the robot in A may move toward the other robot’s position.

Clearly, the largest possible distance covered is obtained by repeating the following activation
scheme: no robot moves in the first phase, one robot moves by at most ¢ in the second phase, one
robot moves to the other robot’s position, while the other robot moves to the midpoint, in the third
phase. At each cycle, if the starting distance is d, the robots cover a distance of § + 3(d — §)/2 <
d + d/2, and the new distance is (d — 0)/2. Hence, the total distance covered when the robots

gather is strictly smaller than
o~ d
- ; 5 =3

Let us compare this bound with the previous one. Clearly, if k = [d/(26)] > 3, then

(d + 29) {2{5—‘ —d>dk+d—d > 3d.
Therefore, if the two robots start behaving asymmetrically when their distance is greater than 64,
they fail to cover the maximum possible distance. Otherwise, if the distance is smaller, it is easy
to verify manually that making them move symmetrically is still better. Indeed, note that when
the robots start being asymmetric, regardless of their stats, they must first reduce their distance
by at least §, before being able to switch sides. O

If the robots’ initial state is not necessarily A, the upper bounds of Observation [20| and Propo-
sition [21] increase by 2d, as it is easy to infer.

Note that the number of colors used by Algorithm [3]is optimal. This follows as a corollary of
the impossibility result when lights are visible to both robots:

Lemma 22. [26/ In SSYNCH, Rendezvous of two robots with persistent memory visible by both of
them is unsolvable by algorithms in L that use only two colors.

5 Interrupted Movements

In this section, we consider the Rendezvous problem when the movement of the robots can be inter-
rupted by an adversary; previously, unless otherwise stated, we have considered rigid movements,
i.e., in each cycle a robot reaches its computed destination point. Now, the only constraint on the
adversary is that a robot, if interrupted before reaching its destination, moves by at least § > 0

18



(otherwise, rendezvous is clearly impossible). We prove that, for rendezvous with lights, knowledge
of § has the same power as rigidity of the movements. Note that knowing § implies also that the
robots can agree on a unit distance.

5.1 FState Robots

Theorem 23. In non-rigid SSYNCH, Rendezvous of two FSTATE robots with knowledge of § is
solvable with three colors. Moreover, if the initial distance is d, the combined distance covered by
the two robots is at most

46 —5d ifd < $,

3d if$<d<y,

d+26 ifd>=0.

Proof. We show that Algorithm [4] correctly solves Rendezvous. Both robots start in state A.
Suppose first that the initial distance is in the interval [0/2,§). Then the robots’ movements are
rigid, i.e., the robots always reach the destinations they compute. If only one robot is activated, it
reaches its partner and Rendezvous is solved, with a distance covered of d. Otherwise, they both
turn B and switch positions, covering a total distance of 2d. Then, if both robots are activated,
they gather in the midpoint. Otherwise, one of them turns C' and moves to the midpoint. Now,
the robot still in B keeps staying still because it observes a distance lower than §/2. On the other
hand, the robot set to C' moves to its partner as soon as it is activated. In all cases, the total
distance covered is 3d.

Suppose now that the initial distance is d > 6. Then, any robot that is activated moves toward
the point located §/4 before the midpoint, until the distance becomes smaller than §. Let d’ be the
first distance lower than ¢ observed by some robot. It is immediate to see that d’ lies in the interval
[0/2,8). At this point, the combined distance covered is d —d’'. Now the previous reasoning applies,
and the robots cover at most an additional distance of 3d’. In total, they cover d —d’ +3d’ < d+ 29.

Finally, assume that the initial distance is d < §/2 (we let d > 0, because if d = 0 both robots
immediately terminate). Then, as soon as a robot is activated, it moves away from its partner,
to the point at distance §/2. The distance is lower than ¢, hence these movements are rigid. If
only one robot is activated, it covers a distance of §/2 — d, and the new distance is exactly §/2.
Since both robots are still in state A, the first paragraph’s reasoning applies, and the total distance
covered is at most §/2 — d 4+ 30/2 = 26 — d. In turn, 2§ — d < 4§ — 5d. Instead, if both robots
are activated on the first turn, they move by & — 2d, and the new distance is d + § — 2d = § — d,
which lies in the interval [§/2,0). Hence the first paragraph’s argument applies again, and the final
distance covered is at most § — 2d + 3(6 — d) = 46 — 5d. O

5.2 FComm Robots

Theorem 24. In non-rigid ASYNCH, Rendezvous of two FCOMM robots with knowledge of § is
solvable with three colors. Moreover, if the initial distance is d, the combined distance covered by

the two robots is at most
60 —4d ifd <6,

2d if 5 <d< 26,
d+25 ifd>20.

Proof. We show that Algorithm [5] correctly solves Rendezvous. Suppose that, at some point during
the execution, say at time ¢, robot r is in state READY and it is not moving, and robot s sees it.
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Algorithm 4 Rendezvous for non-rigid SSYNCH with knowledge of § and three internal states

1. dist < ||other.position||
2: if dist = 0 then
3: terminate
. if me.state = A then
if dist < 0/2 then

me.state < B

4

5

6

7: else if §/2 < dist < § then

8

9 me.destination < other.position

> reach the point at distance §/2 from the other
me.destination < other.position - (1 —6/(2 - dist))

> gather or switch positions

10: else > dist > 0, reach the point at distance 0/4 from the midpoint

11: me.destination < other.position - (1/2 — 0 /(4 - dist))

12: else if me.state = B then
13: if 0/2 < dist < ¢ then

14: me.state + C

15: me.destination < other.position/2
16: else

17: me.destination < other.position

> me.state = C

Algorithm 5 Rendezvous for non-rigid ASYNCH with knowledge of § and three externally visible

states

1: dist « ||other.position||
2: if other.state = START then
3 if dist = 0 then

4: me.state < COME
5: else if dist < § then
6: me.state < START
7: me.destination < other.position - (1 — §/dist)
8: else if dist > 26 then
9: me.state < START
10: me.destination < other.position - 0 /(2 - dist)
11: else
12: me.state + READY
13: else if other.state = READY then
14: me.state < COME
15: if § < dist < 26 then
16: me.destination < other.position/2
17: else
18: if dist = 0 then
19: me.state < COME
20: terminate
21: else
22: me.state < READY
23: me.destination < other.position

> we have already gathered

> moving to the point at distance § from the other

> moving by §/2 toward the other

> 0 < dist < 26, ready to gather

> reaching the midpoint

> other.state = COME
> we have gathered
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Suppose that the distance between r and s at this time is d’, with § < d’ < 26. Then, s turns COME
and moves to the midpoint. The midpoint is eventually reached, because the distance traveled is
not greater than 4. Assume first that both robots are in state READY at time ¢, both see each
other, and move toward the midpoint. If some robot, say r, reaches the midpoint and sees its
partner s still on its way and set to COME, r turns READY and keeps chasing s. When s reaches
its destination (i.e., the old midpoint) and sees r set to READY and at distance at most §, it stays
still and waits until Rendezvous is solved. In this case, the distance covered by s is d'/2, and the
distance covered by r is at most 3d’/2 (achieved when r reaches s before s starts moving, and then
r follows s toward the former midpoint). Hence the total is at most 2d’. Similarly, assume that
only s sees r set to READY at time ¢, and s turns COME without ever being seen by r in state
READY. s will reach the midpoint and stay there, while » will start chasing s until they meet in
the midpoint. Once again, the combined distance covered is at most 2d’.

As the execution begins, both robots are in state START. If the initial distance d lies in the
interval [4,20), as soon as a robot is activated it turns READY and stays still, and at some point it
will be seen by the other robot. Hence the previous reasoning applies, and the robots gather after
covering a distance of at most 2d.

If the initial distance is d < &, the first robot that is activated, say r, moves away by § — d
(unless d = 0, in which case no robot ever moves). Because this distance is lower than d, r actually
reaches its destination. If s is never activated before r reaches its target, then the new distance is
exactly 9, the first robot to be activated turns READY, and the first paragraph’s reasoning applies.
The resulting distance covered is at most § —d+ 26 = 36 — d, which is less than 6§ —4d. Otherwise,
if s sees r before it has reached its target, say at distance d’, with d < d’ < §, then s moves away
by 6 — d'. Hence the two destination points are exactly 26 — d’ apart. Therefore, the first robot
to reach its destination and perform a new LOOK observes a distance in the interval [,20), turns
READY, and waits. The second robot to perform a LOOK observes a distance of exactly 20 — d’,
which is again in the interval [d,25), and hence the first paragraph’s reasoning applies again. In
total, the robots cover at most a distance of (§ —d) 4+ (6 —d') +2(26 — d') < 60 — 4d.

Finally, if the initial distance is d > 24, the robots keep approaching each other by §/2 at each
step, until they observe a distance lower than 2. Let r be the last robot to observe the other at a
distance not lower than 2§, at time ¢. Then, the destination of r is §/2 toward robot s’s position.
In turn, the destination of s at time ¢ is up to /2 toward robot r’s position. Hence, when the first
robot reaches its destination point and performs a LOOK, it observes a distance lower than 2§ (by
definition of t), which also happens to be in the interval [d,2d). Hence it turns READY and waits.
When also the other robot reaches its destination, the distance d’ is still in the interval [0, 24),
and hence the first paragraph’s reasoning applies. The total distance covered is therefore at most
d—d +2d =d+d < d+20. O

6 Open Problems

We have shown that rendezvous can be obtained both in FSTATE and FCoMM, two models sub-
stantially weaker than the one of [9], where both internal memory and communication memory
capabilities are present. Our results open several new problems and research questions.

Our results, showing that rendezvous is possible in SSYNCH for FSTATE robots and in ASYNCH
for FCoMM robots, seem to indicate that “it is better to communicate than to remember”. How-
ever, determining the precise computational relationship between FSTATE and FCOMM is an open
problem. To settle it, it must be determined whether or not it is possible for FSTATE robots to
rendezvous in ASYNCH.
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Although minimizing the amount of constant memory was not the primary focus of this paper,
the number of states employed by our algorithms is rather small. An interesting research ques-
tion is to determine the smallest amount of memory necessary for the robots to rendezvous when
rendezvous is possible, and devise optimal solution protocols.

The knowledge of § in non-rigid scenarios is quite powerful and allows for simple solutions. It
is an open problem to study Rendezvous for FSTATE and FCOMM robots when § is unknown or
not known precisely.

This paper has extended the classical models of oblivious silent robots into two directions:
adding finite memory, and enabling finite communication. It thus opens the investigation in the F'S-
TATE and FCoMM models of other classical robots problems (e.g., Pattern Formation, Flocking,
etc.); an exception is Gathering because, as mentioned in the introduction, it is already solvable
without persistent memory and without communication [4].
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